Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
PLoS Pathog ; 19(6): e1011434, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-20237504

ABSTRACT

Hepatitis E virus (HEV) is one of the main pathogenic agents of acute hepatitis in the world. The mechanism of HEV replication, especially host factors governing HEV replication is still not clear. Here, using HEV ORF1 trans-complementation cell culture system and HEV replicon system, combining with stable isotope labelling with amino acids in cell culture (SILAC) and mass spectrometry (MS), we aimed to identify the host factors regulating HEV replication. We identified a diversity of host factors associated with HEV ORF1 protein, which were putatively responsible for viral genomic RNA replication, in these two cell culture models. Of note, the protein arginine methyltransferase 5 (PRMT5)/WDR77 complex was identified in both cell culture models as the top hit. Furthermore, we demonstrated that PRMT5 and WDR77 can specifically inhibit HEV replication, but not other viruses such as HCV or SARS-CoV-2, and this inhibition is conserved among different HEV strains and genotypes. Mechanistically, PRMT5/WDR77 can catalyse methylation of ORF1 on its R458, impairing its replicase activity, and virus bearing R458K mutation in ORF1 relieves the restriction of PRMT5/WDR77 accordingly. Taken together, our study promotes more comprehensive understanding of viral infections but also provides therapeutic targets for intervention.


Subject(s)
COVID-19 , Hepatitis E virus , Hepatitis E , Humans , Hepatitis E virus/genetics , SARS-CoV-2 , Virus Replication/physiology , Protein-Arginine N-Methyltransferases/genetics
2.
npj Urban Sustainability ; 3(1):3, 2023.
Article in English | ProQuest Central | ID: covidwho-2288521

ABSTRACT

Currently, the global situation of COVID-19 is aggravating, pressingly calling for efficient control and prevention measures. Understanding the spreading pattern of COVID-19 has been widely recognized as a vital step for implementing non-pharmaceutical measures. Previous studies explained the differences in contagion rates due to the urban socio-political measures, while fine-grained geographic urban spreading pattern still remains an open issue. Here, we fill this gap by leveraging the trajectory data of 197,808 smartphone users (including 17,808 anonymous confirmed cases) in nine cities in China. We find a general spreading pattern in all cities: the spatial distribution of confirmed cases follows a power-law-like model and the spreading centroid human mobility is time-invariant. Moreover, we reveal that long average traveling distance results in a high growth rate of spreading radius and wide spatial diffusion of confirmed cases in the fine-grained geographic model. With such insight, we adopt the Kendall model to simulate the urban spreading of COVID-19 which can well fit the real spreading process. Our results unveil the underlying mechanism behind the spatial-temporal urban evolution of COVID-19, and can be used to evaluate the performance of mobility restriction policies implemented by many governments and to estimate the evolving spreading situation of COVID-19.

3.
npj Urban Sustainability ; 3(1):3, 2023.
Article in English | ProQuest Central | ID: covidwho-2221878

ABSTRACT

Currently, the global situation of COVID-19 is aggravating, pressingly calling for efficient control and prevention measures. Understanding the spreading pattern of COVID-19 has been widely recognized as a vital step for implementing non-pharmaceutical measures. Previous studies explained the differences in contagion rates due to the urban socio-political measures, while fine-grained geographic urban spreading pattern still remains an open issue. Here, we fill this gap by leveraging the trajectory data of 197,808 smartphone users (including 17,808 anonymous confirmed cases) in nine cities in China. We find a general spreading pattern in all cities: the spatial distribution of confirmed cases follows a power-law-like model and the spreading centroid human mobility is time-invariant. Moreover, we reveal that long average traveling distance results in a high growth rate of spreading radius and wide spatial diffusion of confirmed cases in the fine-grained geographic model. With such insight, we adopt the Kendall model to simulate the urban spreading of COVID-19 which can well fit the real spreading process. Our results unveil the underlying mechanism behind the spatial-temporal urban evolution of COVID-19, and can be used to evaluate the performance of mobility restriction policies implemented by many governments and to estimate the evolving spreading situation of COVID-19.

4.
VOLUNTAS: International Journal of Voluntary and Nonprofit Organizations ; : 1-15, 2023.
Article in English | EuropePMC | ID: covidwho-2218897

ABSTRACT

The dramatic rise of charitable crowdfunding has changed the landscape of fundraising and giving. Little empirical work, however, has been done to explore critical factors that are associated with successful charitable crowdfunding campaigns run both by formal charities and non-charities. To advance the literature on donation-based charitable crowdfunding, we draw on a unique dataset of 427 COVID-19 crowdfunding campaigns in China, examining whether and how external and internal quality signals are related to crowdfunding success measured by total donation amount. Our results show that crowdfunding success is positively associated with internal signals (updates and predefined duration), whereas the role of external signals (platform and award) is less certain. While we find a positive relationship between award information and funding success, informal campaigns using an alternative medium seem to generate more donations than formal campaigns using authorized platforms. The implications of this study for theory, practice and policy are also discussed.

5.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2046995

ABSTRACT

Given pandemic risks of zoonotic SARS-CoV-2 variants and other SARS-like coronaviruses in the future, it is valuable to perform studies on conserved antigenic sites to design universal SARS-like coronavirus vaccines. By using antibodies obtained from convalescent COVID-19 patients, we succeeded in functional comparison of conserved antigenic sites at multiple aspects with each other, and even with SARS-CoV-2 unique antigenic sites, which promotes the cognition of process of humoral immune response to the conserved antigenic sites. The conserved antigenic sites between SARS-CoV-2 and SARS-CoV can effectively induce affinity maturation of cross-binding antibodies, finally resulting in broadly neutralizing antibodies against multiple variants of concern, which provides an important basis for universal vaccine design, however they are subdominant, putatively due to their lower accessibility relative to SARS-CoV-2 unique antigenic sites. Furthermore, we preliminarily design RBDs to improve the immunogenicity of these conserved antigenic sites. Our study focusing on conserved antigenic sites provides insights for promoting the development of universal SARS-like coronavirus vaccines, thereby enhancing our pandemic preparedness.

6.
J Pharm Biomed Anal ; 216: 114804, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1804615

ABSTRACT

Enzyme-labeled secondary antibody is often used to amplify the output signal in the process of antibody detection. However, its preparation process is complex and time-consuming. Herein, we fabricated an innovative hydrophilic rhodamine B-loaded / boronic acid-modified graphene oxide (HRBGO) nanocomposite, used as a substitute of enzyme-labeled second antibody. The synthetic HRBGO was loaded with generous rhodamine B and modified with boronic acid. Therefore, the HRBGO could selectively label the carbohydrate chains of Fc fragment of primary antibody through specific boronate affinity recognition, and then perform signal output and amplification by releasing rhodamine B. To verify the practicability of HRBGO, trastuzumab as a humanized monoclonal antibody targeting human epidermal growth factor receptor-2 (HER2) was selected as model antibody. A glycosylation site-blocked / HER2-immobilized magnetic nanoparticles (GHMN) was also prepared for selectively capturing trastuzumab from complex samples via specific immunoaffinity. Because the glycosylation sites of HER2 can also be labeled with the HRBGO by boronate affinity recognition, these sites were blocked by a masking agent to minimize the background signal. For specific and ultrasensitive detection of trastuzumab, the integration of GHMN and HRBGO was proposed and optimized in detail. Trastuzumab detection based on HRBGO consisted of three steps: specific capture, selective labeling, and output signal. The proposed strategy provided ultrahigh sensitivity with limit of detection of 0.35 fg mL-1 and was successfully applied in the detection of trastuzumab in spiked serum sample with recovery and relative standard deviation in the range of 98.7-103.8% and 3.8-6.0%, respectively. To assess universal applicability, the HRBGO was also successfully used for the determination of anti-SARS-COV2 RBD antibody in human serum sample.


Subject(s)
COVID-19 , Nanocomposites , Boronic Acids , Graphite , Humans , Rhodamines , Trastuzumab
7.
Infect Dis Poverty ; 10(1): 58, 2021 May 05.
Article in English | MEDLINE | ID: covidwho-1216938

ABSTRACT

BACKGROUND: Shanghai had a local outbreak of COVID-19 from January 21 to 24. Timely and precise strategies were taken to prevent further spread of the disease. We discussed and shared the experience of COVID-19 containment in Shanghai. PROCESS: The first two patients worked at two hospitals but no staff from the two hospitals were infected. The suspected case and his two close contacts were confirmed to be infected within 12 h. The testing rate of individuals was low. The scope of screening was minimized to two related districts and the close contact tracing was completed within 12 h, which were precise and cost-effective. CONCLUSIONS: Active monitoring, precise epidemiological investigation and timely nucleic acid testing help discover new cases, minimize the scope of screening, and interrupt the transmission.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Age Distribution , Aged , Aged, 80 and over , COVID-19/complications , COVID-19/prevention & control , China/epidemiology , Contact Tracing , Diabetes Complications , Disease Outbreaks , Female , Humans , Hypertension/complications , Male , Middle Aged , Obesity/complications , Quarantine/standards
8.
High-Confidence Computing ; : 100005, 2021.
Article in English | ScienceDirect | ID: covidwho-1141782

ABSTRACT

Identifying “superspreaders” of disease is a pressing concern for society during pandemics such as COVID-19. Superspreaders represent a group of people who have much more social contacts than others. The widespread deployment of WLAN infrastructure enables non-invasive contact tracing via people’s ubiquitous mobile devices. This technology offers promise for detecting superspreaders. In this paper, we propose a general framework for WLAN-log-based superspreader detection. In our framework, we first use WLAN logs to construct contact graphs by jointly considering human symmetric and asymmetric interactions. Next, we adopt three vertex centrality measurements over the contact graphs to generate three groups of superspreader candidates. Finally, we leverage SEIR simulation to determine groups of superspreaders among these candidates, who are the most critical individuals for the spread of disease based on the simulation results. We have implemented our framework and evaluate it over a WLAN dataset with 41 million log entries from a large-scale university. Our evaluation shows superspreaders exist on university campuses. They change over the first few weeks of a semester, but stabilize throughout the rest of the term. The data also demonstrate that both symmetric and asymmetric contact tracing can discover superspreaders, but the latter performs better with daily contact graphs. Further, the evaluation shows no consistent differences among three vertex centrality measures for long-term (i.e., weekly) contact graphs, which necessitates the inclusion of SEIR simulation in our framework. We believe our proposed framework and these results can provide timely guidance for public health administrators regarding effective testing, intervention, and vaccination policies.

9.
Front Med ; 15(3): 486-494, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1122810

ABSTRACT

Tocilizumab has been reported to attenuate the "cytokine storm" in COVID-19 patients. We attempted to verify the effectiveness and safety of tocilizumab therapy in COVID-19 and identify patients most likely to benefit from this treatment. We conducted a randomized, controlled, open-label multicenter trial among COVID-19 patients. The patients were randomly assigned in a 1:1 ratio to receive either tocilizumab in addition to standard care or standard care alone. The cure rate, changes of oxygen saturation and interference, and inflammation biomarkers were observed. Thirty-three patients were randomized to the tocilizumab group, and 32 patients to the control group. The cure rate in the tocilizumab group was higher than that in the control group, but the difference was not statistically significant (94.12% vs. 87.10%, rate difference 95% CI-7.19%-21.23%, P = 0.4133). The improvement in hypoxia for the tocilizumab group was higher from day 4 onward and statistically significant from day 12 (P = 0.0359). In moderate disease patients with bilateral pulmonary lesions, the hypoxia ameliorated earlier after tocilizumab treatment, and less patients (1/12, 8.33%) needed an increase of inhaled oxygen concentration compared with the controls (4/6, 66.67%; rate difference 95% CI-99.17% to-17.50%, P = 0.0217). No severe adverse events occurred. More mild temporary adverse events were recorded in tocilizumab recipients (20/34, 58.82%) than the controls (4/31, 12.90%). Tocilizumab can improve hypoxia without unacceptable side effect profile and significant influences on the time virus load becomes negative. For patients with bilateral pulmonary lesions and elevated IL-6 levels, tocilizumab could be recommended to improve outcome.


Subject(s)
COVID-19 Drug Treatment , Antibodies, Monoclonal, Humanized , Humans , SARS-CoV-2 , Treatment Outcome
10.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: covidwho-1117490

ABSTRACT

The pandemic of COVID-19, caused by SARS-CoV-2, is a major global health threat. Epidemiological studies suggest that bats (Rhinolophus affinis) are the natural zoonotic reservoir for SARS-CoV-2. However, the host range of SARS-CoV-2 and intermediate hosts that facilitate its transmission to humans remain unknown. The interaction of coronavirus with its host receptor is a key genetic determinant of host range and cross-species transmission. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as the receptor to enter host cells in a species-dependent manner. In this study, we characterized the ability of ACE2 from diverse species to support viral entry. By analyzing the conservation of five residues in two virus-binding hotspots of ACE2 (hotspot 31Lys and hotspot 353Lys), we predicted 80 ACE2 proteins from mammals that could potentially mediate SARS-CoV-2 entry. We chose 48 ACE2 orthologs among them for functional analysis, and showed that 44 of these orthologs-including domestic animals, pets, livestock, and animals commonly found in zoos and aquaria-could bind the SARS-CoV-2 spike protein and support viral entry. In contrast, New World monkey ACE2 orthologs could not bind the SARS-CoV-2 spike protein and support viral entry. We further identified the genetic determinant of New World monkey ACE2 that restricts viral entry using genetic and functional analyses. These findings highlight a potentially broad host tropism of SARS-CoV-2 and suggest that SARS-CoV-2 might be distributed much more widely than previously recognized, underscoring the necessity to monitor susceptible hosts to prevent future outbreaks.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/veterinary , Receptors, Virus/genetics , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Host Specificity , Humans , Pandemics/prevention & control , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Phylogeny , Protein Binding , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Tropism , Viral Zoonoses/genetics , Viral Zoonoses/prevention & control , Viral Zoonoses/virology , Virus Attachment , Virus Internalization
11.
J Diabetes Res ; 2021: 9526701, 2021.
Article in English | MEDLINE | ID: covidwho-1066964

ABSTRACT

The induction of inflammation and cytokine storm was proposed to play a critical role in COVID-19. This study is aimed at investigating the relationship between glucose metabolism and the inflammatory state of inpatients with COVID-19. 71 inpatients with COVID-19 were classified into nondiabetes mellitus (NDM) group, impaired fasting glucose (IFG) group, and diabetes mellitus (DM) group. The average hospitalization days were significantly shorter in DM patients when compared with patients in the IFG group and NDM group. CD4+ T cell percentage was higher while CD8+ T cells percentage was lower in the DM group than those in the NDM group. The serum levels of IL-6, IL-2, IL-10, and INF-γ in the DM group were upregulated when compared with those in the NDM group. The serum levels of TNF-α, IL-4, IL-2, IL-10, and INF-γ were significantly higher in the DM group than those in the IFG group. A significant difference was observed in CD4+ T cell, CD4+/CD8+ ratio percentage, IL-6, and IL-10 between the NDM group and DM group with adjusted BMI. In conclusion, COVID-19 patients with elevated glucose levels have promoted cytokine profiles and immune response.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Cytokines/immunology , Diabetes Mellitus, Type 2/immunology , Inflammation Mediators/immunology , SARS-CoV-2/immunology , Adult , Aged , Biomarkers/blood , Blood Glucose/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , COVID-19/blood , COVID-19/epidemiology , COVID-19/virology , Cytokines/blood , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Female , Host-Pathogen Interactions , Humans , Inflammation Mediators/blood , Length of Stay , Male , Middle Aged , Prognosis , Time Factors
12.
Infect Dis Poverty ; 9(1): 99, 2020 Jul 20.
Article in English | MEDLINE | ID: covidwho-655343

ABSTRACT

BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) has caused a public catastrophe and global concern. The main symptoms of COVID-19 are fever, cough, myalgia, fatigue and lower respiratory tract infection signs. Almost all populations are susceptible to the virus, and the basic reproduction number (R0) is 2.8-3.9. The fight against COVID-19 should have two aspects: one is the treatment of infected patients, and the other is the mobilization of the society to avoid the spread of the virus. The treatment of patients includes supportive treatment, antiviral treatment, and oxygen therapy. For patients with severe acute respiratory distress syndrome (ARDS), extracorporeal membrane oxygenation (ECMO) and circulatory support are recommended. Plasma therapy and traditional Chinese medicine have also achieved good outcomes. This review is intended to summarize the research on this new coronavirus, to analyze the similarities and differences between COVID-19 and previous outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) and to provide guidance regarding new methods of prevention, diagnosis and clinical treatment based on autodock simulations. METHODS: This review compares the multifaceted characteristics of the three coronaviruses including COVID-19, SARS and MERS. Our researchers take the COVID-19, SARS, and MERS as key words and search literatures in the Pubmed database. We compare them horizontally and vertically which respectively means concluding the individual characteristics of each coronavirus and comparing the similarities and differences between the three coronaviruses. RESULTS: We searched for studies on each outbreak and their solutions and found that the main biological differences among SARS-CoV-2, SARS-CoV and MERS-CoV are in ORF1a and the sequence of gene spike coding protein-S. We also found that the types and severity of clinical symptoms vary, which means that the diagnosis and nursing measures also require differentiation. In addition to the common route of transmission including airborne transmission, these three viruses have their own unique routes of transmission such as fecal-oral route of transmission COVID-19. CONCLUSIONS: In evolutionary history, these three coronaviruses have some similar biological features as well as some different mutational characteristics. Their receptors and routes of transmission are not all the same, which makes them different in clinical features and treatments. We discovered through the autodock simulations that Met124 plays a key role in the efficiency of drugs targeting ACE2, such as remdesivir, chloroquine, ciclesonide and niclosamide, and may be a potential target in COVID-19.


Subject(s)
Antiviral Agents/chemistry , Coronavirus Infections , Pandemics , Peptidyl-Dipeptidase A/chemistry , Pneumonia, Viral , Receptors, Virus/chemistry , Severe Acute Respiratory Syndrome , Angiotensin-Converting Enzyme 2 , Animals , Antiviral Agents/metabolism , Betacoronavirus/genetics , Betacoronavirus/physiology , Betacoronavirus/ultrastructure , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Clinical Trials as Topic , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Coronavirus Infections/transmission , Disease Reservoirs , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/physiology , Middle East Respiratory Syndrome Coronavirus/ultrastructure , Molecular Docking Simulation , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Pneumonia, Viral/transmission , Receptors, Coronavirus , Receptors, Virus/metabolism , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/physiology , Severe acute respiratory syndrome-related coronavirus/ultrastructure , SARS-CoV-2 , Severe Acute Respiratory Syndrome/diagnosis , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/transmission , COVID-19 Drug Treatment
13.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.07.20147926

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) is a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). It has been found that coronary artery disease (CAD) is a comorbid condition for COVID-19. As the risk factors of CAD, whether blood lipids levels are causally related to increasing susceptibility and severity of COVID-19 is still unknown. Design: We performed two-sample Mendelian Randomization (MR) analyses to explore whether dyslipidemia, low density lipoprotein cholesterol (LDL-c), high density lipoprotein cholesterol (HDL-c), triglyceride (TG) and total cholesterol (TC) were causally related to COVID-19 risk and severity. The GWAS summary data of blood lipids involving in 188,578 individuals and dyslipidemia in a total of 53,991 individuals were used as exposures, respectively. Two COVID-19 GWASs including 1,221 infected patients and 1,610 severe patients defined as respiratory failure were employed as outcomes. Based on the MR estimates, we further carried out gene-based and gene-set analysis to explain the potential mechanism for causal effect. Results: The MR results showed that dyslipidemia was casually associated with the susceptibility of COVID-19 and induced 27% higher odds for COVID-19 infection (MR-IVW OR = 1.27, 95% CI: 1.08 to 1.49, p-value = 3.18 x 10-3). Moreover, the increasing level of blood TC will raise 14 % higher odds for the susceptibility of COVID-19 (MR-IVW OR = 1.14, 95% CI: 1.04 to 1.25, p-value = 5.07 x 10-3). Gene-based analysis identified that ABO gene was associated with TC and the gene-set analysis found that immune processes were involved in the risk effect of TC. Conclusions: We obtained three conclusions: 1) Dyslipidemia is casually associated with the susceptibility of COVID-19; 2) TC is a risk factor for the susceptibility of COVID-19; 3) The different susceptibility of COVID-19 in specific blood group may be partly explained by the TC concentration in diverse ABO blood groups.


Subject(s)
Coronavirus Infections , Dyslipidemias , Coronary Artery Disease , COVID-19 , Respiratory Insufficiency
SELECTION OF CITATIONS
SEARCH DETAIL